Article Index

References

1. Lombardo M., Lombardo G. Wave aberration of human eyes and new descriptors of image optical quality of the eye. J. Cataract Refract. Surg. 2010; 36:313–331. [PubMed]
2. Thibos L.N., Hong X., Bradley A., Cheng X. Statistical variation of aberration structure and image quality in a normal population of healthy eyes. JOSA A. 2002; 19:2329–2348. [PubMed]
3. Charman W.N., Chateau N. The prospects for super-acuity: Limits to visual performance after correction of monochromatic ocular aberration. Ophthalmic Physl. Opt. 2003; 23:479–493. [PubMed]
4. Guirao A., Porter J., Williams D.R., Cox I.G. Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes. JOSA A. 2002; 19:1–9. [PubMed]
5. Resnikoff S., Pascolini D., Etya'ale D., Kocur I., Pararajasegaram R., Pokharel G.P., Mariotti S.P. Global data on visual impairment in the year 2002. Bull. WHO. 2004; 82:844–851. [PMC free article] [PubMed]
6. Williams D.R. Imaging single cells in the living retina. Vis. Res. 2011; 51:1379–1396. [PMC free article] [PubMed]
7. Godara P., Dubis A.M., Roorda A., Duncan J.L., Carroll J. Adaptive optics retinal imaging: Emerging clinical applications. Optom. Vis. Sci. 2010; 87:930–941. [PMC free article] [PubMed]
8. Williams D.R., Yoon G.Y., Porter J., Guirao A., Hofer H., Cox I. Visual benefit of correcting higher order aberrations of the eye. J. Refract. Surg. 2000; 16:S554–S559. [PubMed]
9. Castejon-Mochón J.F., López-Gil N., Benito A., Artal P. Ocular wave-front aberration statistics in a normal young population. Vis. Res. 2002; 42:1611–1617. [PubMed]
10. Porter J., Guirao A., Cox I.G., Williams D.R. Monochromatic aberrations of the human eye in a large population. JOSA A. 2001; 18:1793–1803. [PubMed]
11. Thibos L.N. The prospects for perfect vision. J. Refract. Surg. 2000; 16:S540–S546. [PubMed]
12. Thibos L.N., Bradley A., Hong X. A statistical model of the aberration structure of normal, well-corrected eyes. Ophthalmic Physl. Opt. 2002; 22:427–433. [PubMed]
13. Salmon T.O., Van de Pol C. Normal-Eye zernike coefficients and root-mean-square wavefront errors. J. Cataract Refract. Surg. 2006; 32:2064–2074. [PubMed]
14. Guirao A., Porter J., Williams D.R., Cox I.G. Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes. JOSA A. 2002; 19:1–9. [PubMed]
15. Wang Y., Zhao K., Jin Y., Zuo T. Changes of higher order aberration with various pupil sizes in myopic eyes. J. Refract. Surg. 2003; 19:S270–S274. [PubMed]
16. Cheng H., Barnett J.K., Vilupuru A.S., Marsack J.D., Kasthurirangan S., Applegate R.A., Roorda A. A population study on changes in wave aberrations with accommodation. J. Vis. 2004; 4:272–280. [PubMed]
17. Hofer H., Artal P., Singer B., Aragon J.L., Williams D.R. Dynamics of the eye's wave aberration. JOSA A. 2001; 18:497–506. [PubMed]
18. Li K., Yoon G. Changes in aberration and retinal image quality due to tear film dynamics. Opt. Express. 2006; 14:12552–12559. [PubMed]
19. Dreher A.W., Bille J.F., Weinreb R.N. Active optical depth resolution improvement of the laser tomographic scanner. Appl. Opt. 1989; 28:804–808. [PubMed]
20. Liang J., Miller D.T., Williams D.R. Supernormal and high-resolution retinal imaging through adaptive optics. JOSA A. 1997; 14:2884–2892. [PubMed]
21. Dubra A., Sulai Y. Reflective afocal broadband adaptive optics scanning ophthalmoscope. Biomed. Opt. Express. 2011; 2:1757–1768. [PMC free article] [PubMed]
22. Miller D.T., Kocaoglu O.P., Wang Q., Lee S. Adaptive optics and the eye (super resolution OCT) Eye. 2011; 25:321–330. [PMC free article] [PubMed]
23. Carroll J., Neitz M., Hofer H., Neitz J., Williams D.R. Functional photoreceptor loss revealed with adaptive optics: An alternate cause of color blindness. PNAS. 2004; 101:8461–8466. [PMC free article] [PubMed]
24. Godara P., Dubis A.M., Roorda A., Duncan J.L., Carroll J. Adaptive optics retinal imaging: Emerging clinical applications. Optom. Vis. Sci. 2010; 87:930–941. [PMC free article] [PubMed]
25. Lombardo M., Lombardo G. New methods and techniques for sensing the wave aberration of human eyes. Clin. Exp. Optom. 2009; 92:176–186. [PubMed]
26. Liang J., Grimm B., Goelz S., Billie J.F. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. JOSA A. 1994; 11:1949–1957. [PubMed]
27. Platt R., Shack R. History and principles of Shack-Hartmann wavefront sensing. J. Refract. Surg. 2001; 17:S573–S577. [PubMed]
28. Pfund J., Lindlein N., Schwider J. Dynamic range expansion of a shack-hartmann sensor by use of a modified unwrapping algorithm. Opt. Lett. 2000; 39:561–567. [PubMed]
29. Miller J.M., Anwaruddin R., Straub J., Schwiegerling J. Higher order aberrations in normal, dilated, intraocular lens, and laser in situ keratomileusis corneas. J. Refract. Surg. 2002; 18:S579–S583. [PubMed]
30. Kuroda T., Fujikado T., Maeda N., Oshika T., Hirohara Y., Mihashi T. Wavefront analysis of higher-order aberrations in patients with cataract. J. Cataract Refract. Surg. 2002; 28:438–44. [PubMed]
31. Marsack J., Milner T., Rylander G., Leach N., Roorda A. Applying wavefront sensors and corneal topography to keratoconus. Biomed. Sci. Instrum. 2002; 38:471–476. [PubMed]
32. Yoon G., Pantanelli S., Nagy L.J. Large-Dynamic-Range shack-hartmann wavefront sensor for highly aberrated eyes. J. Biomed. Opt. 2006; 11:30502. [PubMed]
33. Gonsalves R.A. Phase retrieval and diversity in adaptive optics. Opt. Eng. 1982; 21:829–832.
34. Fienup J.R. Phase retrieval algorithms: A comparison. Appl. Opt. 1982; 21:2758–2769. [PubMed]
35. Teague M.R. Deterministic phase retrieval: A Green's function solution. JOSA A. 1983; 73:1434–1441.
36. Gureyev T.E., Roberts A., Nugent A. Phase retrieval with the transport-of-intensity equation: Matrix solution with use of Zernike polynomials. JOSA A. 1995; 12:1932–1941.
37. Gureyev T.E., Nugent A. Phase retrieval with the transport-of-intensity equation. II. orthogonal series solution for nonuniform illumination. JOSA A. 1996; 13:1670–1682.
38. Roddier F. Curvature sensing and compensation: A new concept in adaptive optics. Appl. Opt. 1988; 27:1223–1225. [PubMed]
39. Diaz-Douton F., Pujol J., Arjona M., Luque S.O. Curvature sensor for ocular wavefront measurement. Opt. Lett. 2006; 31:2245–2247. [PubMed]
40. Ragazzoni R. Pupil plane wavefront sensing with an oscillating prism 1996. J. Mod. Opt. 1996; 43:289–293.
41. Ragazzoni R., Farinato J. Sensitivity of a pyramidic wave front sensor in closed loop adaptive optics. Astron. Astrophys. 1999; 350:L23–L26.
42. Iglesias I., Ragazzoni R., Julien Y., Artal P. Extended source pyramid wave-front sensor for the human eye. Opt. Express. 2002; 10:419–428. [PubMed]
43. Chamot S.R., Dainty C., Esposito S. Adaptive optics for ophthalmic applications using a pyramid wavefront sensor. Opt. Express. 2006; 2:518–526. [PubMed]
44. Leibbrandt G.W.R., Harbers G., Kunst P.J. Wavefront analysis with high accuracy by use of a double-grating lateral shearing interferometer. Appl. Opt. 1996; 35:6151–6161. [PubMed]
45. Gundlach A., Huntley J.M., Manzke B., Schwider J. Speckle shearing interferometry using a diffractive optical beamsplitter. Opt. Eng. 1997; 36:1488–1493.
46. Griffin D.W. Phase-Shifting shearing interferometer. Opt. Lett. 2001; 26:140–141. [PubMed]
47. Harbers G., Kunst P.J., Leibbrandt W.R. Analysis of lateral shearing interferograms by use of Zernike polynomials. Appl. Opt. 1996; 35:6162–6172. [PubMed]
48. Karp J.H., Chan T.K., Ford J.E. Integrated diffractive shearing interferometry for adaptive wavefront sensing. Appl. Opt. 2008; 35:6666–6674. [PubMed]
49. Chanteloup J.C. Multiple-Wave lateral shearing interferometry for wavefront sensing. Appl. Opt. 2005; 44:1559–1571. [PubMed]
50. Siegel C., Loewenthal F., Balmer J.E. A wavefront sensor based on the fractional talbot effect. Opt. Commun. 2001; 194:265–275.
51. Nakano Y., Murata K. Measurements of phase objects using the Talbot effect and moiré techniques. Appl. Opt. 1984; 23:2296–2299. [PubMed]
52. Salama N.H., Patrignani D., De Pasquale L., Sicre E.E. Wavefront sensor using the talbot effect. Opt. Laser Technol. 1999; 31:269–272.
53. Sekine R., Shibuya T., Ukai K., Komatsu S., Hattori M., Mihashi T., Nakazawa N., Hirohara Y. Measurement of wavefront aberration of human eye using Talbot image of two-dimensional grating. Opt. Rev. 2006; 13:207–211.
54. Warden L., Liu Y., Binder P.S., Dreher A.W., Sverdrup L. Performance of a new binocular wavefront aberrometer based on a self-imaging diffractive sensor. J. Refract. Surg. 2008; 24:188–196. [PubMed]
55. Prieto P., Fernández E., Manzanera S., Artal P. Adaptive optics with a programmable phase modulator: Applications in the human eye. Opt. Exp. 2004; 12:4059–4071. [PubMed]
56. Fernández E., Prieto P., Artal P. Adaptive optics binocular visual simulator to study stereopsis in the presence of aberrations. JOSA A. 2010; 27:A48–A55. [PubMed]
57. Kong N., Li C., Xia M., Li D., Qi Y., Xuan L. Optimization of the open-loop liquid crystal adaptive optics retinal imaging system. J. Biomed. Opt. 2012 doi: 10.1117/1.JBO.17.2.026001. [PubMed] [Cross Ref]
58. Hampson K. Topical review: Adaptive optics and vision. J. Mod. Opt. 2008; 55:3425–3467.
59. Hardy J. Adaptive Optics for Astronomical Telescopes (Oxford Series in Optical and Imaging Sciences) Oxford University Press; New York, NY, USA: 1998.
60. Horsley D., Park H., Laut S., Wernet J. Characterisation for vision science applications of a bimorph deformable mirror using phase-shifting interferometry. Proc. SPIE. 2005; 5688:133–144.
61. Chen D., Jones S., Silva D., Olivier S. High-Resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors. JOSA A. 2007; 24:1305–1312. [PubMed]
62. Vdovin G., Sarro P. Flexible mirror micromachined in silicon. Appl. Opt. 1995; 34:2968–2972. [PubMed]
63. Bonora S., Poletto L. Push-Pull membrane mirrors for adaptive optics. Opt. Express. 2006; 14:11935–11944. [PubMed]
64. Bonora S., Coburn D., Bortolozzo U., Dainty C., Residori S. High resolution wavefront correction with photocontrolled deformable mirror. Opt. Express. 2012; 20:5178–5188. [PubMed]
65. Bifano T., Perreault J., Bierden P., Dimas C. Micromachined deformable mirrors for adaptive optics. Proc. SPIE. 2002; 4825:10–13.
66. Fernández E., Vabre L., Hermann B., Unterhuber A., Považay B., Drexler W. Adaptive optics with a magnetic deformable mirror: applications in the human eye. Opt. Express. 2006; 14:8900–8917. [PubMed]
67. Lombardo M., Serrao S., Ducoli P., Lombardo G. Adaptive optics photoreceptor imaging. Ophthalmology. 2012; 119:1498–198e. 2. [PubMed]
68. Ödlund E., Raynaud H.F., Kulcsár C., Harms F., Levecq X., Martins F., Chateau N., Podoleanu A. Control of an electromagnetic deformable mirror using high speed dynamics characterization and identification. Appl. Opt. 2010; 49:G120–G128.
69. Iqbal A., Wu Z., Amara F. Closed-Loop control of magnetic fluid deformable mirrors. Opt. Express. 2009; 17:18597–18970. [PubMed]
70. Vdovin G. Closed-loop adaptive optical system with a liquid mirror. Opt. Lett. 2009; 34:524–526. [PubMed]
71. Devaney N., Dalimier E., Farrell T., Coburn D., Mackey R., Mackey D., Laurent F., Daly E., Dainty C. Correction of ocular and atmospheric wavefronts: A comparison of the performance of various deformable mirrors. Appl. Opt. 2008; 47:6550–6562. [PubMed]
72. Alpern M., Ching C.C., Kitahara K. The directional sensitivity of retinal rods. J. Physiol. 1983; 343:577–592. [PMC free article] [PubMed]
73. Carroll J., Choi S.S., Williams D.R. In vivo imaging of the photoreceptor mosaic of a rod monochromat. Vis. Res. 2008; 48:2564–2568. [PMC free article] [PubMed]
74. Dubra A., Sulai Y., Norris J.L., Cooper R.F., Dubis A.M., Williams D.R., Carroll J. Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope. Biomed. Opt. Express. 2011; 2:1864–1876. [PMC free article] [PubMed]
75. Doble N., Choi S.S., Codona J.L., Christou J., Enoch J.M., Williams D.R. In vivo imaging of the human rod photoreceptor mosaic. Opt. Lett. 2011; 36:31–33. [PMC free article] [PubMed]
76. Garrioch R., Langlo C., Dubis A.M., Cooper R.F., Dubra A., Carroll J. Repeatability on in vivo cone density and spacing measurements. Optom. Vis. Sci. 2012; 89:632–643. [PMC free article] [PubMed]
77. Li K.Y., Roorda A. Automated identification of cone photoreceptors in adaptive optics retinal images. JOSA A. 2007; 24:1358–1363. [PubMed]
78. Xue B., Choi S.S., Doble N., Werner J.S. Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera. JOSA A. 2007; 24:1364–1372. [PMC free article] [PubMed]
79. Wojtas D.H., Wu B., Ahnelt P.K., Bones P.J., Millane R.P. Automated analysis of differential interference contrast microscopy images of the foveal cone mosaic. JOSA A. 2008; 25:1181–1189. [PubMed]
80. Rodieck R.W. The density recovery profile: A method for the analysis of points in the plane applicable to retinal studies. Vis. Neurosci. 1991; 6:95–111. [PubMed]
81. Brostow W., Dussault J.P., Fox B.L. Construction of Voronoi polyhedra. J. Comput. Phys. 1978; 29:81–92.
82. Chui T.Y.P., Song H., Burns S. Individual variations in human cone photoreceptor packing density: Variations with refractive error. Invest. Ophthalmol. Vis. Sci. 2008; 49:4679–4687. [PMC free article] [PubMed]
83. Li K.Y., Tiruveedhula P., Roorda A. Intersubject variability of foveal cone photoreceptor density in relation to eye length. Invest. Ophthalmol. Vis. Sci. 2010; 51:6858–6867. [PMC free article] [PubMed]
84. Chui T.Y.P., Song H., Burns S. Adaptive-Optics imaging of human cone photoreceptor distribution. JOSA A. 2008; 25:3021–3029. [PMC free article] [PubMed]
85. Song H., Chui T.Y.P., Zhong Z., Elsner A.E., Burns S.A. Variation of cone photoreceptor packing density with retinal eccentricity and age. Invest. Ophthalmol. Vis. Sci. 2011; 52:7376–7384. [PMC free article] [PubMed]
86. Curcio C.A., Sloan K.R., Kalina R.E., Hendrickson A.E. Human photoreceptor topography. J. Comp. Neurol. 1990; 292:497–523. [PubMed]
87. Curcio C.A., Sloan K.R. Packing geometry of human cone photoreceptors: variation with eccentricity and evidence of local anisotropy. Vis. Neurosci. 1992; 9:169–180. [PubMed]
88. Curcio C.A., Sloan K.R., Packer O., Hendrickson A.E., Kalina R.E. Distribution of cones in human and monkey retina: Individual variability and radial asymmetry. Science. 1987; 236:579–582. [PubMed]
89. Østerberg G.A. Topography of the layer of rods and cones in the human retina. Acta Ophthalmol. 1935; 13:1–97.
90. Jonas J.B., Schneider U., Naumann G.O.H. Count and density of human retinal photoreceptors. Graef. Arch. Clin. Exp. Ophthal. 1992; 230:505–510. [PubMed]
91. Lombardo M., Serrao S., Ducoli P., Lombardo G. Variations in the image optical quality of the eye and the sampling limit of resolution of the cone mosaic with axial length in young adults. J. Cataract Refract. Surg. 2012; 38:1147–1155. [PubMed]
92. Coletta N.J., Watson T. Effect of myopia on visual acuity measured with laser interference fringes. Vis. Res. 2006; 46:636–651. [PubMed]
93. Rossi E.A., Roorda A. The relationship between visual resolution and cone spacing in the human fovea. Nat. Neurosci. 2010; 13:156–157. [PMC free article] [PubMed]
94. Sjöstrand J., Olsson V., Popovic Z., Conradi N. Quantitative estimations of foveal and extra-foveal retinal circuitry in humans. Vis. Res. 1999; 39:2987–2998. [PubMed]
95. Drasdo N., Millican C.L., Katholi C.R., Curcio C.A. The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field. Vis. Res. 2007; 47:2901–2911. [PMC free article] [PubMed]
96. Pallikaris A., Williams D.R., Hofer H. The reflectance of single cones in the living human eye. Invest. Ophthalmol. Vis. Sci. 2003; 44:4580–4592. [PubMed]
97. Ravi S.J., Besecker J.R., Derby J.C., Kocaoglu O.P., Cense B., Gao W., Wang Q., Miller D.T. Imaging outer segment renewal in living human cone photoreceptors. Opt. Express. 2010; 18:5257–5270. [PMC free article] [PubMed]
98. Ravi S.J., Rha J., Zhang Y., Cense B., Gao W., Miller D.T. In vivo functional imaging of human cone photoreceptors. Opt. Express. 2007; 15:16141–16160. [PMC free article] [PubMed]
99. Cooper R.F., Dubis A.M., Pavaskar A., Rha J., Dubra A., Carroll J. Spatial and temporal variation of rod photoreceptor reflectance in the human retina. Biomed. Opt. Express. 2011; 2:2577–2589. [PMC free article] [PubMed]
100. Rha J., Schroeder B., Godara P., Carroll J. Variable optical activation of human cone photoreceptors visualized using a short coherence light source. Opt. Lett. 2009; 34:3782–3784. [PMC free article] [PubMed]
101. Choi S.S., Doble N., Lin J., Christou J., Williams D.R. Effect of wavelength on in vivo images of the human cone mosaic. JOSA A. 2005; 22:2598–2605. [PubMed]
102. Kocaoglu O.P., Lee S., Jonnal R.S., Wang Q., Herde A.E., Derby J.C., Gao W., Miller D.T. Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics. Biomed. Opt. Express. 2011; 2:748–763. [PMC free article] [PubMed]
103. Pircher M., Kroisamer J.S., Felberer F., Sattmann H., Göttzinger E., Hitzenberger C.K. Temporal changes of human cone photoreceptors observed in vivo with SLO/OCT. Biomed. Opt. Express. 2010; 2:100–112. [PMC free article] [PubMed]
104. Rha J., Jonnal R.S., Thorn K.E., Qu J., Zhang Y., Miller D.T. Adaptive optics flood-illumination camera for high-speed retinal imaging. Opt. Express. 2006; 14:4552–4569. [PubMed]
105. Roorda A., Williams D.R. Optical fiber properties of individual human cones. J. Vis. 2002; 35:607–614. [PubMed]
106. Burns S.A., Wu S., He J.C., Elsner A.E. Variations in photoreceptor directionality across the central retina. JOSA A. 1997; 14:2033–2040. [PMC free article] [PubMed]
107. He J.C., Marcos S., Burns S.A. Comparison of cone directionality determined by psychophysical and reflectometric techniques. JOSA A. 1999; 16:2363–2369. [PMC free article] [PubMed]
108. Rativa D., Vohnsen B. Analysis of individual cone-photoreceptor directionality using scanning laser ophthalmoscopy. Biomed. Opt. Express. 2011; 2:1423–1431. [PMC free article] [PubMed]
109. Marcos S., Tornow R.P., Elsner A.E., Navarro R. Foveal cone spacing and cone photopigment density difference: objective measurements in the same subjects. Vis. Res. 1997; 37:1909–1915. [PubMed]
110. Duncan J.L., Zhang Y., Gandhi J., Nakanishi C., Otham M., Brahnam K.E.H., Swaroop A., Roorda A. High-Resolution imaging with adaptive optics in patients with inherited retinal degeneration. Invest. Ophthalmol. Vis. Sci. 2007; 48:3283–3291. [PubMed]
111. Chen Y., Ratnam K., Sundquist S.M., Lujan B., Ayyagari R., Gudiseva V.H., Roorda A., Duncan J.L. Cone photoreceptor abnormalities correlate with vision loss in patients with Stargardt disease. Invest. Ophthalmol. Vis. Sci. 2011; 52:3281–3292. [PMC free article] [PubMed]
112. Choi S.S., Zawadzki R.J., Lim M.C., Brandt J.D., Keltner J.L., Doble N., Werner J.S. Evidence of outer retinal changes in glaucoma patients as revealed by ultrahigh-resolution in vivo retinal imaging. Br. J. Ophthalmol. 2011; 95:131–141. [PMC free article] [PubMed]
113. Tam J., Dhamdhere K.P., Tiruveedhula P., Lujan B.J., Johnson R.N., Bearse M.A., Adams A.J., Jr., Roorda A. Subclinical capillary changes in non-proliferative diabetic retinopathy. Optom. Vis. Sci. 2012; 89:E692–E703. [PMC free article] [PubMed]
114. Tam J., Dhamdhere K.P., Tiruveedhula P., Manzanera S., Barez S., Bearse M.A., Jr., Adams J.A., Roorda A. Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 2012; 52:9257–9266. [PMC free article] [PubMed]
115. Klein R., Knudtson M.D., Lee K.E., Gangnon R., Klein B.E. The wisconsin epidemiologic study of diabetic retinopathy xxiii: The twenty-five-year incidence of macular edema in persons with type 1 diabetes. Ophthalmology. 2009; 116:497–503. [PMC free article] [PubMed]
116. Scully T. Diabetes in numbers. Nature. 2012; 485:S2–S3. [PubMed]
117. Early Treatment Diabetic Retinopathy Study Research Group Fundus photographic risk factors for progression of diabetic retinopathy. ETDRS Report Number 12. Ophthalmology. 1991; 98:823–833. [PubMed]
118. Moore J., Bagley S., Ireland G., McLeod D., Boulton M.E. Three dimensional analysis of microaneurysms in the human diabetic retina. J. Anat. 1999; 194:89–110. [PMC free article] [PubMed]
119. Kern T.S., Engerman R.L. Vascular lesions in diabetes are distributed non-uniformly within the retina. Exp. Eye Res. 1995; 60:545–549. [PubMed]
120. Cunha-Vaz J.G. Pathophysiology of diabetic retinopathy. Br. J. Ophthalmol. 1978; 62:351–355. [PMC free article] [PubMed]
121. Barber A.J. A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog. Neuro-Psych. Biol. Psych. 2003; 27:283–290. [PubMed]
122. Verma A., Rani P.K., Raman R., Pal S.S., Laxmi G., Gupta M., Sahu C., Vaitheeswaran S.T. Is neuronal dysfunction on early sign of diabetic retinopathy? Microperimetry and Spectral Domain Optical Coherence Tomography (SD-OCT) study in individuals with diabetes, but no diabetic retinopathy. Eye. 2009; 23:1824–1830. [PubMed]
123. Fletcher E.L., Phipps J.A., Wilkinson-Berka J.L. Dysfunction of retinal neurons and glia during diabetes. Clin. Exp. Optom. 2005; 88:132–145. [PubMed]
124. Lieth E., Gardner T.W., Barber A.J., Antonetti D.A. Retinal neurodegeneration: Early pathology in diabetes. Clin. Exp. Ophthalmol. 2000; 28:3–8. [PubMed]
125. Van Dijk H.W., Kok P.H., Garvin M., Sonka M., De Vries J.H., Michels R.P., Van Velthoven M.E., Schlingemann R.O., Verbraak F.D., Abràmoff M.D. Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 2009; 50:3404–3409. [PMC free article] [PubMed]
126. Kylstra J.A., Brown J.C., Jaffe G.J., Cox T.A., Gallemore R., Greven C.M., Hall J.G., Eifrig D.E. The importance of fluorescein angiography in planning laser treatment of diabetic macular edema. Ophthalmology. 1999; 106:2068–2073. [PubMed]
127. Mendis K.R., Balaratnasingam C., Yu P., Barry C.J., McAllister I.L., Cringle S.J., Yu D.Y. Correlation of histological and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail. Invest. Ophthalmol. Vis. Sci. 2010; 51:5864–5869. [PubMed]
128. Popovic Z., Knutsson P., Thaung J., Petersen M.O., Sjostrand J. Noninvasive imaging of human foveal capillary network using dual-conjugate adaptive optics. Invest. Ophthalmol. Vis. Sci. 2011; 52:2649–2655. [PubMed]
129. Tam J., Martin J.A., Roorda A. Noninvasive visualization and analysis of parafoveal capillaries in humans. Invest. Ophthalmol. Vis. Sci. 2010; 51:1691–1698. [PMC free article] [PubMed]
130. Uji A., Hangai M., Ooto S., Takayama K., Arakawa N., Imamura H., Nozato K., Yoshimura N. The source of moving particles in parafoveal capillaries detected by adaptive optics scanning laser ophthalmoscopy. Invest. Ophthalmol. Vis. Sci. 2012; 53:171–178. [PubMed]
131. Wang Q., Kocaoglu O.P., Cense B., Bruestle J., Jonnal R.S., Gao W., Miller D.T. Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics. Invest. Ophthalmol. Vis. Sci. 2011; 52:6292–6299. [PMC free article] [PubMed]
132. Hammer D.X., Iftimia N.V., Ferguson R.D., Bigelow C.E., Ustun T.E., Barnaby A.M., Fultun A.B. Foveal fine structure in retinopathy of prematurity: An adaptive optics fourier domain optical coherence tomography study. Invest. Ophthalmol. Vis. Sci. 2008; 49:2061–2070. [PMC free article] [PubMed]
133. Schnoll T., Singh A.S.G., Blatter C., Schriefl S., Ahlers-Erfurth U.S., Leitgeb R.A. Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension. Biomed. Opt. Expess. 2011; 2:1159–1168. [PMC free article] [PubMed]
134. Fischer M.D., Huber G., Feng Y., Tanimoto N., Mühlfriedel R., Beck S.C., Tröger E., Kernstock C., Preising M.N., Lorenz B., Hammes H.P., Seeliger M.W. In vivo assessment of retinal vascular wall dimensions. Invest. Ophthalmol. Vis. Sci. 2010; 51:5254–5259. [PubMed]
135. Zhong Z., Petrig B.L., Qi X., Burns S. In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy. Opt. Expr. 2008; 16:12746–12755. [PMC free article] [PubMed]
136. Parravano M., Lombardo M., Lombardo G., Boccassini B., Lioi S., Varano M. In Vivo investigation of the retinal microscopy in patients with type 1 Diabetes Mellitus. Invest. Ophthalmol. Vis. Sci. 2012; 53 E-Abstract: 5657.
137. Smith W., Assink J., Klein R., Mitchell P., Klaver C.C., Klein B.E., Hofman A., Jensen S., Wang J.J., De Jong P.T. Risk factors for age-related macular degeneration: Pooled findings from three continents. Ophthalmology. 2001; 108:697–704. [PubMed]
138. Choudhury F., Varma R., McKean-Cowdin R., Klein R., Azen S.P., Los angeles latino eye study group Risk factors for four-year incidence and progression of age-related macular degeneration: The los angeles latino eye study. Amer. J. Ophthalmol. 2011; 152:385–395. [PMC free article] [PubMed]
139. Chakravarthy U., Wong T.Y., Fletcher A., Piault E., Evans C., Zlateva G., Buggage R., Pleil A., Mitchell P. Clinical risk factors for age-related macular degeneration: A systematic review and meta-analysis. BMC Ophthalmol. 2010; 13:10–31. [PMC free article] [PubMed]
140. Klein R.J., Zeiss C., Chew E.Y., Tsai J.Y., Sackler R.S., Haynes C., Henning A.K., SanGiovanni J.P., Mane S.M., Mayne S.T., et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005; 15:385–389. [PMC free article] [PubMed]
141. Maller J.B., Fagerness J.A., Reynolds R.C., Neale B.M., Daly M.J., Seddon J.M. Variation in complement factor 3 is associated with risk of age-related macular degeneration. Nat. Genet. 2007; 39:1200–1201. [PubMed]
142. Reynolds R., Rosner B., Seddon J.M. Serum lipid biomarkers and hepatic lipase gene associations with age-related macular degeneration. Ophthalmology. 2010; 117:1989–1995. [PMC free article] [PubMed]
143. Sobrin L., Ripke S., Yu Y., Fagerness J., Bhangale T.R., Tan P.L., Souied E.H., Buitendijk G.H.S., Merriam J.E., Richardson A.J. Heritability and genome-wide association study to assess genetic differences between advanced age-related macular degeneration subtypes. Ophthalmology. 2012; 119:1874–1885. [PMC free article] [PubMed]
144. Neale B.M., Fagerness J., Reynolds R., Sobrin L., Parker M., Raychaudhuri S., Tan P.L., Oh E.C., Merriam J.E., Souied E. Genome-Wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC) PNAS. 2010; 20:7395–7400. [PMC free article] [PubMed]
145. McKay G.J., Patterson C.C., Chakravarthy U., Dasari S., Klaver C.C., Vingerling J.R., Ho L., De Jong P.T.V.M., Fletcher A.E., Young I.S. Evidence of association of APOE with age-related macular degeneration: A pooled analysis of 15 studies. Hum Mutat. 2011; 32:1407–1416. [PMC free article] [PubMed]
146. Yu Y., Bhangale T.R., Fagerness J., Ripke S., Thorleifsson G., Tan P.L., Souied E.H., Richardson A.J., Merriam J.E., Buitendijk G.H.S. Common variants near FRK/COL10A1 and VEGFA are associated with advanced age-related macular degeneration. Hum. Mol. Genet. 2011; 20:3699–3709. [PMC free article] [PubMed]
147. Seddon J.M., Reynolds R., Yu Y., Daly M.J., Rosner B. Risk models for progression to advanced age-related macular degeneration using demographic, environmental, genetic, and ocular factors. Ophthalmology. 2011; 118:2203–2211. [PMC free article] [PubMed]
148. Ding X., Patel M., Chan C.C. Molecular pathology of age-related macular degeneration. Prog. Retin. Eye Res. 2009; 28</>:1–18. [PMC free article] [PubMed]
149. Grisanti S., Tatar O. The role of vascular endothelial growth factor and other endogenous interplayers in age-related macular degeneration. Prog. Retin. Eye Res. 2008; 27:372–390. [PubMed]
150. Ambati J., Fowler B.J. Mechanisms of age-related macular degeneration. Neuron. 2012; 12:26–39. [PMC free article] [PubMed]
151. Lim L.S., Mitchell P., Seddon J.M., Holz F.G., Wong T.Y. Age-Related macular degeneration. Lancet. 2012; 5:1728–1738. [PubMed]
152. Godara P., Siebe C., Rha J., Michaelides M., Carroll J. Assessing the photoreceptor mosaic over drusen using adaptive optics and SD-OCT. Ophthalmic Surg. Lasers Imaging. 2010; 41:S104–S108. [PMC free article] [PubMed]
153. Godara P., Wagner-Schuman M., Rha J., Connor T.B., Jr., Stepien K.E., Carroll J. Imaging the photoreceptor mosaic with adaptive optics: Beyond counting cones. Advan. Exp. Med. Biol. 2012; 723:451–458. [PMC free article] [PubMed]
154. Boretsky A., Khan F., Burnett G., Hammer D.X., Ferguson R.D., Van Kuijk F., Motamedi M. In vivo imaging of photoreceptor disruption associated with age-related macular degeneration: A pilot study. Laser Surg. Med. 2012; 44:603–610. [PMC free article] [PubMed]
155. Kotecha A., Fernandes S., Bunce C., Franks W.A. Avoidable sight loss from glaucoma: Is it unavoidable? Br. J. Ophthalmol. 2012; 96:816–820. [PubMed]
156. Quigley H.A., Broman A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006; 90:262–167. [PMC free article] [PubMed]
157. Quigley H.A. Glaucoma. Lancet. 2011; 377:1367–1377. [PubMed]
158. Alencar L.M., Zangwill L.M., Weinreb R.N., Bowd C., Sample P.A., Girkin C.A., Liebmann J.M., Medeiros F.A. A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma. Invest. Ophthalmol. Vis. Sci. 2010; 51:3531–3539. [PMC free article] [PubMed]
159. Sakamoto A., Hangai M., Nukada M., Nakanishim H., Morim S., Koteram Y., Inoue R., Yoshimura N. Three-dimensional imaging of macular retinal nerve fiber layer in glaucoma using spectral-domain optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 2010; 51:5062–5070. [PubMed]
160. Quigley H.A., Reacher M., Katz J., Strahlman E., Gilbert D., Scott R. Quantitative grading of nerve fiber layer photographs. Ophthalmology. 1993; 100:1800–1807. [PubMed]
161. Mansouri K., Leite M.T., Medeiros F.A., Leung C.K., Weinreb R.N. Assessment of rates of structural change in glaucoma using imaging technologies. Eye. 2011; 25:269–277. [PMC free article] [PubMed]
162. Lim T.C., Chattopadhyay S., Acharya U.R. A survey and comparative study on the instruments for glaucoma detection. Med. Eng. Phys. 2012; 34:129–139. [PubMed]
163. Takayama K., Ooto S., Hangai M., Arakawa N., Oshima S., Shibata N., Hanebuchi M., Inoue T., Yoshimura N. High-Resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy. PLoS ONE. 2012 doi: 10.1371/journal.pone.0033158. [PMC free article] [PubMed] [Cross Ref]
164. Huang G., Qi X., Chui T.Y., Zhong Z., Burns S.A. A clinical planning module for adaptive optics SLO imaging. Optom. Vis. Sci. 2012; 89:593–601. [PMC free article] [PubMed]
165. Kocaoglu O.P., Cense B., Jonnal R.S., Wang Q., Lee S., Gao W., Miller D.T. Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics. Vis. Res. 2011; 51:1835–1844. [PMC free article] [PubMed]
166. Merino D., Duncan J.L., Tiruveedhula P., Roorda A. Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope. Biomed. Opt. Express. 2011; 2:2189–2201. [PMC free article] [PubMed]
167. Zawadzki R.J., Jones S.M., Pilli S., Balderas-Mata S., Kim D.Y., Olivier S.S., Werner J.S. Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging. Biomed. Opt. Express. 2011; 2:1674–1686. [PMC free article] [PubMed]
168. Tam J., Tiruveedhula P., Roorda A. Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope. Biomed. Opt. Express. 2011; 2:781–793. [PMC free article] [PubMed]
169. Chui T.Y.C., Van Nasdale D.A., Burns S.A. The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope. Biomed. Opt. Express. 2012; 3:2537–2549. [PMC free article] [PubMed]
170. Lombardo M., Lombardo G., Schiano L.D., Ducoli P., Stirpe M., Serrao S. Interocular symmetry of parafoveal photoreceptor cone density distribution. Retina. 2013 in press. [PubMed]
171. Rha J., Dubis A.M., Wagner-Schuman M., Tait D.M., Godara P., Schroeder B., Stepien K., Carroll J. Spectral domain optical coherence tomography and adaptive optics: imaging photoreceptor layer morphology to interpret preclinical phenotypes. Advan. Exp. Med. Biol. 2010; 664:309–316. [PMC free article] [PubMed]
172. Seyedahmadi B.J., Vavvas D. In vivo high-resolution retinal imaging using adaptive optics. Semin. Ophthalmol. 2010; 25:186–191. [PubMed]
Articles from Sensors (Basel, Switzerland) are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)